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Ellipsometry of the Liquid-Vapor Interface 
Close to the Critical Point: A Theoretical Analysis I 

D. Bedeaux,  2 E. M.  Blokhuis,  2 and J. W. Schmidt 3 

It is shown that the ellipsometric coefficient for a liquid-vapor interface may be 
written as the sum of three contributions. The first is given by Drude's formula. 
The second contribution is due to capillary wave fluctuations. Finally, the third 
contribution is due to fluctuations of the density profile around the 
Fisk-Widom profile with a wavelength up to roughly the bulk correlation 
length and thus short compared to the capillary length. Close to the critical 
point the first two contributions scale as ( T - T o )  p-v. The expression for the 
third contribution contains an integral over the excess density correlation func- 
tion over wave vectors large compared to the inverse bulk correlation length. 
The scaling behavior of the third contribution is probably such that this term 
becomes unimportant close to the critical point. The formulae given in this 
paper only for the liquid-vapor interface may be used for a binary fluid if one 
makes the usual substitutions. An experimental analysis of the ellipsometrie 
coefficient for binary fluids close to the critical point by Schmidt [1] indicates 
that the sum of the first two terms predicts a value which is somewhat to large 
but which has the correct scaling behavior. A discussion of this difference in 
amplitude is given. 
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1. I N T R O D U C T I O N  

I n  t w o  p r e v i o u s  p a p e r s  [2 ,  3 ] ,  ca l l ed  h e r e a f t e r  I a n d  II,  Z i e l i n s k a  et  al. 

s t u d i e d  t he  e l e c t r o m a g n e t i c  p r o p e r t i e s  of  a l i q u i d - v a p o r  i n t e r f a c e  u s i n g  

i n t e r r ac i a l  c o n s t i t u t i v e  coeff ic ients .  T h e s e  coef f ic ien ts  exp re s s  the  excess  
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polarisation and magnetization in terms of the extrapolated bulk fields. 
Using a dielectric coefficient which changes from a nonfluctuating value el 
in the liquid to a nonfluctuating value sg in the gas at the fluctuating loca- 
tion of the dividing surface, we were able to derive explicit expressions for 
these constitutive coefficients in terms of the height autocorrelation func- 
tion [2]. We then analyzed the resulting behavior of the ellipsometric coef- 
ficient when one approaches the critical point [3]. The agreement with 
existing experimental data 1-4] was not very satisfactory. The more usual 
approach is to calculate the dielectric constant profile by substitution of the 
Fisk-Widom [5] density profile into Clausius-Mossotti. The ellipsometric 
coefficient is then given by Drude's formula [6]. In this second approach 
capillary waves are not properly taken into account. It is clear that agree- 
ment of either one of the two approaches with the experimental results 
should not be expected. Marvin and Toigo [7]  have proposed to simply 
add the results of the above two methods. As both contributions have the 
same scaling properties close to the critical point this results in adding the 
amplitudes. While the resulting exponent agrees with the experimental 
results for binary liquids the predicted amplitude is somewhat too large 
[ I ] .  

It is the aim of this contribution to derive an expression for the ellip- 
sometric coefficient in which not only capillary waves and the Fisk-Widom 
profile are taken into account but also the effects of density fluctuations 
around this profile with a wavelength of the order of the bulk correlation 
length and thus short compared to the capillary length [-8]. 

The equilibrium position of the dividing surface is assumed to be flat 
and the x - y  plane is chosen along this surface. The optical p.roperties of 
the surface of discontinuity can be described in terms of the average excess 
polarization, fis, and magnetization, ~r s, densities. These, as we discussed 
in I and II, are expressed in terms of the value of the extrapolated bulk 
fields at the dividing surface in the following way: 

a 
fi~(x, y, t ) =  ~.(Ex,  Ey, D~) + - zs A - ~ t  Zq + (1) 

MS(x,  y, t ) =  - - ~  A c at + (2) 

where s = (0, 0, 1) is the normal on the equilibrium dividing surface, A 
indicates a vectorproduct, c is the velocity of light,/~(r', t) the electric field, 
/t(f, t) the magnetic field, and / ) ( f ,  t) the displacement field. Furthermore, 
the subscript + indicates half the sum of the extrapolated (i.e., z = 0 )  
values on both sides of the surface. The tensor (, as well as ~, depend in 
principle on the projection of the wavevector # u -  (kx, ky, 0) along the 
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dividing surface and the frequency e;. Because of rotational symmetry 

around the z-axis and translational symmetry along the surface, ~ is an 
isotropic tensor with the general form 

~= 7(1 - dd) + fldd + ir/d/~jp - i6/~lF ~ (3) 

As the dependence of 7, fl, 6, r/, and z on k H = [kill and ~o is unimportant 
for the problem on hand, we neglect such a dependence. 

To obtain the optical properties of the surface of discontinuity one 
needs the boundary conditions [9]: 

(Ex, Ey, Dz)_ ~--~--( = c ~ t  - M ~ , M ~ , 0 ) - ( 2 V I I - V j l 2 ) . f i  S (4) 

0 ps (Hx, R,, a=) = ~  ( y, - e  s, 0 ) -  (ev H -vr~e).~/'  (5) 

where VII --= (O/•x, ~/~y, 0) and where, in view of the nonmagnetic nature of 
the system, we use B = H. Using these boundary conditions one finds for 
the ellipsometric coefficient [2, 10] 

r = � 8 9  - ~,~g/~)(Sl + ~g)~/2/(~, _ ~g) (6) 

In the following sections we derive explicit expressions for -/and ft. In view 
of the fact that z, t/, and 6 do not contribute to the ellipsometric coefficient, 
we simplify the analysis in such a way that z, t/, and 6 will end up being 
zero. In a subsequent paper a more complete analysis will be given in 
which all these coefficients are calculated consistently to the second order 
in the thickness of the surface of discontinuity. 

2. T H E O R Y  

In order to derive formulae for the interfacial constitutive coefficients 
one must calculate the excess polarization and magnetization densities. As 
contributions due to correlations are important, one must first calculate the 
fluctuating excess polarization and magnetization densities, /~s and rff s, 
respectively, and then average these in order to obtain fis and 3~ s. One 
may generally show that the fluctuating excess polarization density is given 
by [11] 

f 
o o  

lYe(x, y, t )= dz [d .... (f, t), d,~,y(g t), - e  .... (~ t)] 
- - o o  

(7) 
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where the fluctuating fields are indicated by lowercase letters. Furthermore, 
the subscript ex indicates the real field minus the bulk field extrapolated 
into the surface of discontinuity. For the excess magnetization density one 
may write down a similar expression. It is crucial to notice the fact that dx, 
dy, and e~ are fields which change considerably as a function of z through 
the surface of discontinuity, whereas ex, ey, and dz do not change more 
than in the bulk regions over a comparable distance. As a consequence ex, 
%, and dz have no excess. Such an excess would in fact be incompatible 
with the Maxwell equations [9, 11]. Similar observations may be made 
about the magnetic fields. In the analysis of the optical properties of sur- 
faces it is convenient to introduce so-called nonsingular fields 

fie(f, t) - (ex, ey, d~)(f, t) and gm(f, t) =- (hx, hy, b~)(f, t) (8) 

In terms of these fields the constitutive relations become 

dll(~ t )=  e(/~, t)ffe, ll(F, t) and ez(F, t )=  ~-l(r~ t)ne, z(r*, t) (9) 

Similar relations are valid for the magnetic fields with the magnetic 
permeability equal to unity. The dielectric constant e depends on the 
position through the local value of the density 

~(f, t)= e[tS(r, t)] (10) 

The relationship between s and p close to the critical point has been 
discussed in an earlier review [12]. 

In order to give explicit expressions for the extrapolated d~ and e + 
fields we express them in the extrapolated nonsingular fields using the 
extrapolated dielectric constants 

d~(F,t)=s+-(t~t)ff~(F,t) and e+(t~,t)=[e+-(F,t)]-tn+(7, t) 
(11) 

The extrapolated dielectric constants are equal to the constant bulk values 
5-  = eg a n d ,  § = e~ plus a fluctuating contribution due to density fluctua- 
tions in the bulk. 

s--(f, t ) - - s  -+ + 6e-+(f, t) (12) 

Subtracting Eq. (11) from Eq. (9) one obtains for the excess fields 

dl,,e~(t:, t )=r  t) fie, H(f, t ) - s - ( f ,  t) ffT, ii(F, t) O ( - z ) - e + ( f ,  t) ff [lb(f, t) O(z) 

e .... (r*, t )=  [s(/:, t)] -1 ne, z(f, t ) -  [ s - ( r  ~, t)] -1 n~(l~ t) O(-z )  (13) 

- [ ~ + ( ~ ,  t ) ]  - ~  n+z(, ", t) O(z) 
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We now use the crucial fact that the nonsingular ff~ field differs only very 
little from the extrapolated nonsingular field. They are both also almost 
constant inside the surface of discontinuity. In Eq. (13) we therefore make 
the following replacement 

~o(~,t)=~+(~t)=~+(x,y,o,o for + z > 0  (14) 

The difference gives contributions to z, q, and 6 of second order in the 
thickness of the surface of discontinuity and of even higher order to all 
coefficients; they are therefore not important for our present analysis. 
Equation (13) then becomes 

dll,r t ) =  l-(e(?, t ) -  e-(f ,  t)] ~[,II(FII, O, t) O ( - z )  

+ f(~(r; t ) -  ~+(r; t)] ~rl(eH, 0, t) O(z) 
(15) 

ez,~(F, t ) =  {e-l(r~ t)--  l-e- (r~ t)] - i}  ng~(Fll, 0, t) O ( - z )  

+ {~ l(t~, l )--  ['a+(t~ t)] -1 } n+z(r~ll , O, t) 0(,7) 

Substitution of this equation into Eq. (7) gives for the fluctuating excess 
polarization densities, 

= ~b "n~(rll, t) (16) 
v = +  

with 

~,(eH, t) = I ~ 
- - c o  

and 

~, = 7b(1 -- s163 + flb2s (17) 

dz [~(r', t ) -  ev(f, t)] O(vz) 

(18) 
~;(e H, t)= dz {[ev(r; t ) ] - 1  [~(r; t)]-1} O(wl 

- - o o  

Notice that ~ and fl~, are both of the order of the thickness of the surface 
of discontinuity. 

In order to obtain the constitutive equations for the average polariza- 
tion density, we must average Eq. (16): 

fis(frl , t )=  (/~s(Fjl, t ) )  = ~ (~(r~ll, t ) 'n;(frl ,  0, t ) )  (19) 
v = + +  

It is crucial to realize that the fluctuations of ~ and ~ are correlated and 
that as a consequence the average in Eq. (19) may not be broken up. In 
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order to evaluate the contribution of these correlations to second order in 
the thickness of the surface of discontinuity, we write the extrapolated non- 
singular field as a sum of the incident nonsingular field N ~ plus the 
contribution due to/qs: 

f ff+(f, t )=N~ t ) -  d?il dt' Ko(fll-ill ,  z, t -  t'lz' =0)./qs(fil, t') (20) 

For the definition of the propagator K0 we refer to I. Substitution of this 
equation into Eq. (19) gives to second order in the thickness 

z ~ 
v • v,u~• 

where for the sake of simplicity a somewhat more formal notation has been 
used. Up to the order we are interested in we may for the calculation of the 
ellipsometric coefficient replace N ~ by Ne.+. Comparing the result with 
Eq. (1) we thus find 

~= (~b) -- ((b -/~0 �9 (b) (22) 
where 

~bm~b(1--ZZ) +/}b~'~'~ 2 ~; (23) 

Using Eqs. (17) and (18) one has 

f 
oo 

7b(f u, t )=  dz Jeff, t ) - e - ( f ,  t )O( - z ) - e +( f ,  t)0(z)] (24a) 
--co 

~b(fH, t) = dz { [~- ( f ,  t)]  lO(-z)+E~+(f,t)]-'O(z)-E~(f,t)]-l} 
--oo 

(24b) 

for the fluctuating interracial constitutive coefficients. 

3. THE M O D E L  

Until now we have made no assumptions about the dielectric constant 
and, in particular, not about its behavior in the surface of discontinuity. 
Using the average density profile found by Fisk and Widom [5] and 
Clausius-Mossotti, one finds a dielectric constant profile which we ~vw(Z). 
As a general choice for the fluctuating dielectric constant we take 

e(f, t)= evwEz-h(fll ,  t)] + 6e(f, t) (25) 



Ellipsometry of the Liquid-Vapor Interface 19 

where h(fu ,  t) is the fluctuating height of the dividing surface and where 
6e(f, t) is a fluctuation of e around eVW due to density fluctuations with a 
wavelength of the order of the bulk correlation length or shorter [8]. As 
the fluctuations of the height correspond to density fluctuations with a 
much longer wavelength, we assume that h and 6e are uncorrelated. For 
the extrapolated dielectric constants we write 

e~(r, t) = e~ + 6e~(r~ t) with e o = eg and eo ~ = e I (26) 

where 8g and ej are the nonfluctuating dielectric constants of the vapor and 
the liquid away from the surface. Furthermore, 6e ~ are the fluctuations of 
the dielectric constant away from the surface around eg and e~ due to 
density fluctuations in the bulk regions. We take eg and el independent of 
z neglecting a small density gradient due to gravity. This would matter only 
near the surface and in that region is not large enough to have any effect 
on the value of the interfacial constitutive coefficients. 

Substituting Eq. (25) for e into Eq. (24a) for 7b one finds 

~b(e H, t)=f az { ~ w [ z - h ( f l l ,  t ) ] -  e~0Eh(fll, t ) - - z ] - e ~ O E z - h ( e  H, t)]} 

+ f az (e~{0[h(r'l~, t ) - z ] - O ( - z ) }  + e,{0[z--h(fjl,t)] -- 0(z)}) 

+ [ dz [6e(Z t ) -  6e-(~  t) 0 ( - z ) -  6e+(r; t) 0(z)] 

= f az [e~w(Z) - egO(-z) - el0(z)] - ( e ! -  ~g) h(flr, t) 

+ fdz  [ae(r; t ) -ae  (~ t )O(-z)-ae+V,  t) O(z)] (27) 

in a similar way we find 

Pb(r" H , t ) : ~  dz [e~-10(-z) + el ~O(z)- e~w' (z)] + (e~ ~ -- e~ -~) h(f, ,  t) 

+ Id ;  (6{[~-(f, t ) ] - ' }  e ( - ; )  

+6{[~+(4 t)] -~ O(z)-6[~ '(f, t) ]}) 
(28) 

Equations (27) and (28) show that ~b and /~b can be written as the sum of 
three terms. As we see below the first nonfluctuating term gives the Drude 
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formula for the ellipsometric coefficient in the absence of fluctuations. The 
second term is the one considered in I and II and gives a contribution to 
the ellipsometric coefficient due to capillary waves. Finally, the third term 
gives a contribution due to density fluctuations with a shorter wavelength 
which has not been considered before. 

Averaging Eqs. (27) and (28) one obtains 

<Tb(Thl, t)> = I dz [~Fw(Z) -- eg0(--Z) -- el0(Z)] = ?VW 

</?b(711, t)> ---- t dz [eg '0 ( - -z )  + e( lO(z)  -- e{-l(z)] --/~vw 

(29) 

If one substitutes these averages into Eq. (6) for the ellipsometric coef- 
ficient, one obtains 

co(e,+ eg) '/2 ~ [ [eg- e~w(~)] [e~w(z)- e,]~ 
rvw = 2c(~l-  eg) f_ oo dz evw(Z) ] (30) 

which is the expression given by Drude [6].  

The second contribution in ~given in Eq. (22) gives, in view of the fact 
that <h>, <6e>, and <6d> are all zero, three contributions in principle. 
The first is due to the nonfluctuating first contribution to Cb and may be 
shown, upon substitution of the explicit expression for the propagator, to 
be zero. The second contribution due to capillary waves was given in 
Eq. (5.19) in paper I and is given by 

(31) 

where kB is Boltzmann's constant, T the temperature, ~ the surface tension, 
and k~ a cutoff wavevector of the order of the inverse bulk correlation 
length 4. For the third contribution we find along essentially the same lines 
as those used in I to derive Eq. (31), 

1 1 ( a a ~  2 i':mdkli 2 po = = kuSex (k t t , k z=Olk '~=O)  (32) 

where the subscript c indicates that the value at the critical density should 
be used and where km is a cutoff wavevector of the order of 2re divided by 
the diameter of the particles. SeOPx is the excess of the short-wavelength equi- 
librium density-density correlation function and is defined by 
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Sex (rlr ) - ~PPtF ~'ex~ II-rl l  ztz ' )  =(6p(F) 6p(F))  

- <~p-(e) ~p (e')> O(-z) O(-z') 

- <6p+(r3 6p+(r~')> O(z) O(z') (33) 

Due to translational invariance along the surface this correlation function 
depends only on the difference fFt--f(l" The Fourier transform of this 
expression yields the excess correlation function as a function of/~tl, k~, 
and k'~, which function should be used in Eq. (32). It is clear that the 

po We return to this point in problem is to find a proper expression for S~x. 
the Discussion. 

4. DISCUSSION 

The above analysis leads to an expression for the ellipsometric 
coefficient which is a sum of three terms 

r = rvw -+- rcap q- rpp (34) 

rvw is given by Eq. (30) and has the usual form given by Drude. The 
second contribution is due to capillary waves and is given by [2] 

~ 3 ~ ( ~ -  e~) kB_T] 
reap = - L 8c(81 + ~g)l/2 o J  kr (35) 

Finally, the third contribution is given by 

3(..0(2/~C)1/2 ( ~ 2  ffTm RP k 
rpP = 16--~-~c(e~---~) \~p}o ~ dklt k~Sex( It, kz=01k'~=0)  (36) 

The above formulae may be used not only for the liquid-vapor interface 
but also for an interface in a binary liquid. One merely replaces p by the 
appropriate order parameter in Eq. (36). As in a binary liquid one should 
in principle account for the dependence of e on the density of both com- 
ponents, an additional term similar to the one given in Eq. (36) will occur. 
We expect that such an additional contribution will not be important close 
to the critical point. An important property of the first two terms is the fact 
that they scale in the same way close to the critical point [1]. Further- 
more, the predicted exponent is confirmed by the experimental data I-1 ]. 
As the experimental amplitude is somewhat lower than the theoretical 
prediction of this amplitude using only the first two terms, the hope is that 
the third term rpp has the same scaling properties and corrects the theoreti- 
cal amplitude to the experimental value. The problem is therefore to use 
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the properties of SeCx p for k~ < k]l <kin to study rpo. As these properties are 
not really known it is illuminating to use an alternative expression for rcap.  

Using the explicit expression for the contribution to the excess of the 
density autocorrelation function due to capillary waves given in Ref. 13, 
one may verify the following identity 

3~ 1/2 (Ot;~ 2 rk~dkll 2 p p  = kllScap(kll, k z = 0 l k ' z = 0 )  (37) reap 16Z~C(el - -  Eg)  \ G ~ p / c  Jo  

p p  p p  t In fact one may argue that Sex (ktl, kz = 01k'z = 0) = S c a p ( k l l  , k z = 0 l k  z = 0 )  

for ktl < kr see in this context, in particular, Ref. 13. As a consequence one 
may combine Eqs. (36) and (37) and write 

3r 1/2 ( c ~ e ) f i  rm 

= kliSex(ktt, k z = 0 l k ' z = 0 )  rcap+rpp l ~ p g )  ~PP o dkll 2 po (38)  

where we used the fact that close to the critical point • l - - e g  = 

(t~e/t~P)c (Pl--Pg). This shows that the total contribution due to correla- 
tions between the fluctuating susceptibilities and the fluctuating fields can 
be written in terms of the total excess of the density autocorrelation func- 
tion. In order to find the scaling behavior of the above integral, one must 
use the properties of the correlation function. For small values of kll one 

p p  may expand Sex(kit, kz = 0lk'z = 0) in powers of ktt and it follows from the 
Wertheim [-14] and the Triezenburg-Zwanzig [15] identities that, to 
second order, 

S~P~(k,, kz = 01k'z = 0 )  = (p,  - pg)  
k B T  (1 2 2 - k t l L e )  (39) 

g 

The validity of this expression is based on general identities arid thus not 
restricted to a particular model. In the capillary wave model one finds that 

kB T 
S~(ktt, kz --- 0lk'z = 0) = ( p , -  pg) (1 + k~lL2e) 1 

g 
(40) 

For ktlLo.~ 1 this expression found from the capillary wave model is in 
agreement with the expression found on the basis of microscopic identities. 
Using a rather different approach Sikkenket al. [16] also calculate the 
small-ktl behavior of the density autocorrelation function in a gravitational 
field to second power and one may verify that their analysis reproduces 
Eq. (39). One may argue that for kti ~ ke the excess of the correlation func- 
tion is given by the expression found from the capillary wave theory [13]. 
In view of the fact that k~Le ~ 1, the integration up to ke then contributes 
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a term to the ellipsometric coefficient which scales as ( T - T o )  a-v. This 
contribution is in fact the capillary wave contribution given in Eq. (37). In 
evaluating this contribution one writes kr = a/4, where a is a constant. The 
choice of this constant is a problem to which no unique answer as yet 
exists. Sengers and van Leeuwen [17] analyze the contribution due to 
capillary waves to the surface tension and find on the basis of this analysis 
a = 0.748, which is the value used by Schmidt [1 ] in his evaluation of rc,p. 
It is clear, however, that a more fundamental understanding of the precise 
role of the cutoff would be benificial for the quantitative aspects of the 
analysis. 

There remains the contribution rpp given in Eq. (36). As no explicit 
PP expression for S~x(ktt, k z = 0 l k ' z = 0 )  is known for kr < k m ,  it is dif- 

ficult to give a specific prediction. In fact it is easier to turn the problem 
around by asking the question how the scaling behavior of the excess of the 
correlation function must be in order to find a contribution which scales in 
the same way as the other two contributions. If we postulate the following 
scaling behavior for the contribution to the excess of the density 
autocorretation function due to fluctuations with a wavelength shorter than 
or roughly equal to the bulk correlation length 

pp  , 0) = (pl__Pg)2 4 pp S=x(k H , kz = 01 kz = 4 ~fex (ktt 4) (4l) 

PP and assume that f~x (ktl 4) approaches zero fast enough for large values of 
kH4 to make the upper cutoff k m unimportant, we find that roo indeed 
scales in the same way as the other two contributions. If, however, the 
large-ktl~ behavior of fePxP(kH 4) approaches zero proportional to (kll 4) -2, 
the appropriate expression would be 

PP Se, , (kdr ,kz=O[k,z=O)=(p_pg)2 3 pp 4 ~/'~x (kit ~) (42) 

While the occurrence of the factor (p~- pg)2 is not unexpected, the power 
of 4 and the behavior of the scaling function for a large argument are 
rather more hypothetical. 

As an overall conclusion it seems likely that rpp does not have the 
right scaling behavior and is probably not important. The most likely 
reason for the remaining quantitative disagreement between theory and 
experiment is the precise choice of the parameter a in the relation kr = a/4. 
At present this choice is made by analyzing the contribution of capillary 
waves to the surface tension [-17]. While this is clearly appropriate for 
quantities which depend on the surface tension, the integral over the 
correlation function in Eq. (38) seems to need a more fundamental under- 
standing of the behavior of the correlation function for ktf~ in the 
neighborhood of unity. 
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